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Abstract. We study the dynamic effect of band electrons in a periodic binary sequence under
the action of ac electric fields. Using the technique of the Lie algebraSU(2), we obtain
closed-form solutions for the quasienergy and the Floquet states, from which it is found that the
evolution behaviour of electrons can be manipulated by the choice of field parameters.

The propagation of particles in a time-dependent potential is a fundamental problem in
quantum mechanics. There are many results about this topic, and we can cite only a few
[1–7]. Among these previous studies, the particular interest is that of the dynamic effect
of band electrons subject to a time-periodic electric field, which reveals unusual fascinating
aspects. In the investigation of evolution behaviour of an electron in a laser field, it is found
that an initially localized electron will remain localized if the ratio of the field magnitude
and the field frequency is a root of the ordinary Bessel function of order zero [8]. This
phenomenon involving the dynamic localization of moving carriers was re-examined very
recently in a study of quasienergy minibands in superlattices [9]. There it is demonstrated
that the occurrence of miniband collapse coincides with the onset of dynamic localization.

In this paper we study another situation for the motion of electrons in a periodic binary
sequence under the influence of a high-frequency ac electric field. The character of this
model is such that the site energies alternate between the valuesε ± 21. Such a system
is relevant to a variety of fields, including that of exciton states in molecular crystals [10]
and electron localization in superlattices [11]. Moreover it may simulate the dimerized
systems discussed numerically by Hone and Holthaus [7]. We find that this model can be
solved analytically by means of the technique of the Lie algebraSU(2). As a result, we
obtained closed-form solutions for the quasienergy bands and Floquet states, from which it
is demonstrated that the collapse of quasienergy bands will occur under similar conditions
as the single-band case.

The time-dependent Hamiltonian considered here is

H(t) = 21
∑
n

(−1)n|n〉〈n| + V
∑
n

|n〉〈n+ 1| + |n+ 1〉〈n| − eaE(t)
∑
n

n|n〉〈n| (1)

where|n〉 represents a Wannier state localized on lattice siten, V is the nearest-neighbour
intersite hopping matrix element,e is the charge on the electron anda is the periodic
structure constant. The ac electric fieldE(t) can be written explicitly asE(t) = E cosωt
with the amplitudeE and frequencyω. Obviously, the Hamiltonian (1) is periodic in time
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with the lengthT = 2π/ω. Therefore Floquet’s theorem [12] asserts that the wave function
|ψ(t)〉 can be expressed as the product of a phase factor exp(−iεt) and a Floquet state
|u(t)〉 which is cyclic in time with the periodT , whereε is the quasienergy.

By expanding the Floquet state|u(t)〉 as a linear superposition of Wannier states|n〉,
|u(t)〉 =∑n Cn(t)|n〉, we get the Schr̈odinger equation for the amplitudesCn(t) as

i
d

dt
Cn(t) =

[
21(−1)n − ε − neaE cosωt

]
Cn(t)+ V

[
Cn+1(t)+ Cn−1(t)

]
. (2)

By introducing

Cn(t) = exp
{−i

[
(21(−1)n − ε)t − (neaE/ω) sinωt

]}
fn(t) (3)

we transform equation (2) into

i
d

dt
fn(t) = V ei41(−1)nt

[
fn+1(t)e

i(eaE/ω) sinωt + fn−1(t)e
−i(eaE/ω) sinωt

]
. (4)

This equation can be further simplified by using the discrete Fourier transformsf (k, t) =∑
n f2n(t) exp(−ikn), g(k, t) =∑n f2n+1(t) exp(−ikn), (06 k < 2π). The result is

i
∂

∂t
R(k, t) = H(k, t)R(k, t) (5)

where

R(k, t) =
(
f (k, t)

g(k, t)

)
(6)

and

H(k, t) = 2V cos

(
k

2
+ eaE

ω
sinωt

)[
cos

(
k

2
− 41t

)
σx + sin

(
k

2
− 41t

)
σy

]
≡ X(k, t)σx + Y (k, t)σy. (7)

σx andσy (as well asσz used below) are the Pauli matrices. Equation (5) can be solved
explicitly by using the Neumann–Liouville expansion [13]

R(k, t) =
∞∑
m=0

U(m)(k, t, t0)R(k, t0) (8)

with

U(m)(k, t, t0) = (−i)m
(

m∏
l=1

∫ t

t0

dtl

)
θ(t1− t2)θ(t2− t3) . . . θ(tm−1− tm)

×H(k, t1)H(k, t2) . . . H(k, tm) (9)

whereθ(t) = 1 for t > 0 and 0 otherwise. In the following, we will putt0 = 0 without
loss of generality. It has been shown that by using the technique of the Lie algebraSU(2),∑

m=0U
(m)(k, t,0) can be expressed as [14]

∞∑
m=0

U(m)(k, t,0) =
∞∑
m=0

U(2m)
x (k, t)+ iσz

∞∑
m=0

U(2m)
y (k, t)+ iσx

∞∑
m=0

U(2m+1)
x (k, t)

+iσy
∞∑
m=0

U(2m+1)
y (k, t) (10)
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with

U(2m)
x (k, t) = (−1)m

(
2m∏
l=1

∫ t

0
dtl

)
θ(t1− t2) . . . θ(t2m−1− t2m)X(k, t1t2 . . . t2m) (11)

U(2m)
y (k, t) = (−1)m

(
2m∏
l=1

∫ t

0
dtl

)
θ(t1− t2) . . . θ(t2m−1− t2m)Y (k, t1t2 . . . t2m) (12)

U(2m+1)
x (k, t) = (−1)m+1

(
2m+1∏
l=1

∫ t

0
dtl

)
θ(t1− t2) . . . θ(t2m − t2m+1)X(k, t1t2 . . . t2m+1) (13)

U(2m+1)
y (k, t) = (−1)m+1

(
2m+1∏
l=1

∫ t

0
dtl

)
θ(t1− t2) . . . θ(t2m − t2m+1)Y (k, t1t2 . . . t2m+1) (14)

whereX(k, t1t2 . . . tm) andY (k, t1t2 . . . tm) satisfy the following recurrence formulae

X(k, t1t2 . . . tm) = X(k, t1t2 . . . tm−1)X(k, tm)+ Y (k, t1t2 . . . tm−1)Y (k, tm) (m > 2) (15)

Y (k, t1t2 . . . tm) = X(k, t1t2 . . . tm−1)Y (k, tm)− Y (k, t1t2 . . . tm−1)X(k, tm) (m > 2). (16)

Applying the periodicity of the Floquet state|u(t)〉 to equation (3) yields

fn(t + T ) = fn(t) exp{i[21(−1)n − ε]T } (17)

which leads to

R(k, t + T ) = e−iεT [cos(21T )+ iσz sin(21T )] R(k, t). (18)

Note that
∑

m U
(m)(k, t,0) is actually the evolution operatorU(t, 0) in k space. Therefore,

by employing the properties of the evolution operator,U(t, 0) = U(t, t ′)U(t ′, 0) and
U(t, 0) = U †(0, t), to equations (8) and (18) we get the eigenvalue equation

det

{ ∞∑
m=0

U(m)(k, T ,0)− e−iεT [cos(21T )+ iσz sin(21T )]

}
= 0. (19)

Substituting equation (10) into this equation and through a long but straightforward
calculation, we obtain the quasienergies

ε±(k) = ±φ(k, T )
2π

ω mod(ω) (20)

where

φ(k, T ) = cos−1

{
cos(21T )

∞∑
m=0

U(2m)
x (k, T )+ sin(21T )

∞∑
m=0

U(2m)
y (k, T )

}
. (21)

The corresponding wave functions have also been obtained which we have not presented
here.

From equation (20) it is clearly seen that the quasienergy spectrum is that of two
separated bands. Note that from equation (21) we have always|φ(k, T )| 6 π . Therefore
the quasienergies must be in the range−ω/26 ε(k) < ω/2. This means that the length of
a ‘Brillouin zone’ in the quasienergy space isω. We call the range−ω/2 6 ε(k) < ω/2
the first Brillouin zone. Other Brillouin zones can be obtained by adding integral multiples
of ω to the quasienergy.

In principle, equation (21) can hold exactly. This however requires us to calculate
infinite integrals, which, obviously, is impossible. Therefore, to obtain an explicit expression
for the quasienergy we need to make some approximation. Here, as an example, we consider
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the high-frequency limit of the ac electric field. In that case, we can cut off the series in
(21) to do practical calculations.

As the lowest-order approximation of 1/ω, we have

cosφ(k, T ) ' cos(21T )
[
1+ U(2)

x (k, T )
]+ sin(21T )U(2)

y (k, T ). (22)

By the use of equations (7), (11), (12), (15) and (16) forU(2)
x (k, T ) andU(2)

y (k, T ), and
through a long but straightforward calculation we obtain

cosφ(k, T ) = 1− 2

(
2π

ω

)2 [
12+ (V J0(eaE/ω) cos(k/2))2

]
(23)

whereJ0 is the ordinary Bessel function of order zero. This gives

φ(k, T ) ' 4π

ω

[
12+ (V J0(eaE/ω) cos(k/2))2

]1/2
. (24)

Therefore we have

ε±(k) = ±2
[
12+ (V J0(eaE/ω) cos(k/2))2

]1/2
mod(ω). (25)

It has been shown that the energy bands of the undriven system are [15]

ε0
±(k) = ±2

[
12+ V 2 cos2

k

2

]1/2

. (26)

Therefore by comparing equations (25) and (26) we find that the doublet of quasienergy
bands can be rewritten as

ε±(k) = ±2

[
12+ V 2

eff cos2
k

2

]1/2

mod(ω) (27)

with

Veff = V J0(eaE/ω) (28)

which indicates that the influence of the high-frequency driving laser field on the quasienergy
bands is to suppress the band widths through the effective hoppingVeff because of the decay
of Bessel functionJ0 when increasing its argument. A remarkable feature equation (28)
shows is that the effective hoppingVeff vanishes entirely whenever the ratio of the Bloch
frequency� = eaE and the laser frequencyω is a root ofJ0. When this happens, the
band widths of the doublet will shrink into zero, and the quasienergies will turn into exactly
the alternating site energies±21. This phenomenon of band collapse can be clearly seen
from figure 1, where the scaled quasienergiesε±/ω are plotted as a function ofeaE/ω.
The other parameters in the figure are fixed as1/ω = 0.03 andV/ω = 0.22. Since
at the collapse points, for exampleeaE/ω = 2.4, the bands are flattened, the electron
will have an infinite effective mass, and hence its motion becomes localized. Keeping
this in mind, we can conclude that the band collapse is the manifestation of the dynamic
localization. Such observations agree with the numerical findings in two dimerized systems
where the corresponding well width and barrier width of superlattices alternate between
certain regions [7] and are consistent with the evolution behaviour of moving carriers in ac
fields [8, 16].

It is interesting to extend the above analysis to the case when the chain becomes
quasiperiodic or random. There are some discussions on this topic for the tight-binding
single-band case in [17, 18] where it was found that the effect of the electric field on
localization is much stronger than disorder is and one could manipulate the degree of
disorder-induced localization, e.g. Anderson localization [19], by tuning the field parameters.
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Figure 1. The scaled quasienergiesε±/ω as a function ofeaE/ω. The other parameters are
1/ω = 0.03 andV/ω = 0.22.

However, the investigation on the influence of disorder to the Rabi oscillations between
Bloch bands [20] which is generated by the Zener tunnelling under the action of dc–ac
fields, is still absent. We will study this elsewhere.

In summary, we have solved the problem of electrons moving in a periodic binary
sequence under the action of ac electric fields. Using the technique of the Lie algebraSU(2),
we obtained analytical solutions for the quasienergy bands and Floquet states. The evolution
behaviour of electrons was found to be dominantly controlled by the field parameters. This
means that we can manipulate the motion of electrons by adjustment of the electric field.

This work was supported in part by the National Natural Science Foundation of China and
the grant of the China Academy of Engineering and Physics.
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